Fonctions affines et linéaires

I) Fonctions linéaires :

a) Définition:

Soit a un nombre fixé, différent de 0.

On appelle fonction linéaire f, la fonction qui a tout nombre x associe le nombre ax : f(x) = ax.

Le nombre a est appelé le coefficient de la fonction linéaire.

Exemples:

La fonction f définie par f(x) = 3x est une fonction linéaire de coefficient 3.

La fonction h : $x \mapsto -4x$ est une fonction linéaire de coefficient -4.

b) Détermination du coefficient d'une fonction linéaire :

Exemple:

Soit f une fonction linéaire telle que f(3) = 21.

Déterminer l'expression algébrique de la fonction linéaire f.

Méthode:

$$f(x) = ax$$
 on écrit l'image de x par la fonction linéaire f.

$$f(3) = a \times 3$$
 on remplace x par 3.

$$21 = a \times 3$$
 on remplace f(3) par sa valeur 21.

$$a = \frac{21}{3}$$
 on résout l'équation d'inconnue a.

$$a = 7$$

Le coefficient de la fonction linéaire est a = 7 c'est-à-dire f(x) = 7x.

c) Représentation graphique d'une fonction linéaire :

Propriété:

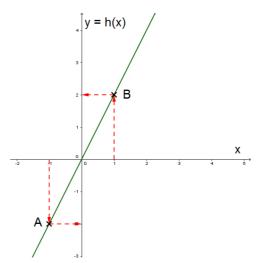
La représentation graphique d'une fonction linéaire est une droite qui passe par l'origine du repère.

Exemple:

Représenter graphiquement la fonction linéaire h définie par h(x) = 2x.

Méthode:

- 1) On détermine l'image de deux nombres par la fonction h, on peut choisir -1 et 1 par exemple :
 - $h(-1) = 2 \times (-1) = -2 => le point A(-1, -2)$ appartient à la représentation graphique de la fonction h.
 - $h(1) = 2 \times 1 = 2 => le point B(1, 2)$ appartient à la représentation graphique de la fonction h.
- 2) On trace un repère, on place les points A et B ainsi déterminés puis on trace la droite (AB), représentation graphique de la fonction linéaire h.

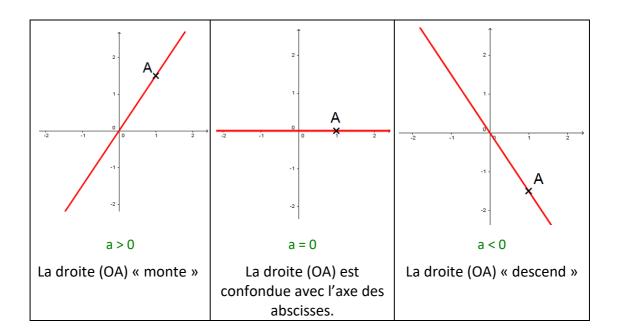


Représentation graphique de la fonction linéaire h

3) On dit que l'équation de la droite (AB) ou (OA) est y = 2x et que son coefficient directeur est 2.

Remarque:

Influence du coefficient a d'une fonction linéaire sur la représentation graphique :



d) Fonction linéaire et droite :

Propriété:

Dans un repère, (d) est la représentation graphique d'une fonction linéaire f définie par f(x) = ax et $M(x_M; y_M)$ est un point donné.

- Si $y_M = ax_M$, alors le point M appartient à la droite (d).
- Réciproquement, si le point M appartient à (d), alors $y_M = ax_M$.

Exemple n°1: montrer qu'un point appartient à une droite:

Soit (d) la représentation graphique d'une fonction linéaire f définie par f(x) = 4x.

Montrons que:

- 1) le point M(3;12) appartient à (d).
- 2) le point N(-2;-7) n'appartient pas à (d).

<u>Méthode</u>: pour chaque point, on calcule l'image de son abscisse que l'on compare ensuite avec son ordonnée.

Point M(3; 12):

 $f(3) = 4 \times 3 = 12$: comme 12 = 12, M appartient à la droite (d).

Point N(-2; -7):

 $f(-2) = 4 \times (-2) = -8$: comme $-7 \neq -8$, N n'appartient pas à la droite (d).

Exemple n°2: Déterminer les coordonnées d'un point appartenant à (d):

Soit (d) la représentation graphique d'une fonction linéaire f définie par f(x) = 3x.

- 1) Calculer l'ordonnée du point M(4 ;y) appartenant à (d).
- 2) Calculer l'abscisse du point N(x ;12) appartenant à (d).

Point M(4; y):

Méthode : l'ordonnée du point M est égale à l'image de son abscisse.

$$y = f(4) = 3 \times 4 = 12.$$

Les coordonnées du point M sont M(4 ; 12)

Point N(x; 9):

Méthode : l'abscisse du point N est égale à l'antécédent de son ordonnée.

On calcule l'antécédent de 9 :

$$f(x) = 9 \implies 3x = 9 \implies x = 3.$$

Les coordonnées du point N sont N(3; 9)

e) Fonction linéaire et proportionnalité :

Propriété:

Une situation de proportionnalité peut être modélisée par une fonction linéaire. Le coefficient de cette fonction linéaire est égal au coefficient de proportionnalité.

Exemple:

Proportionnalité	Fonction linéaire	Graphique	
Un fromager vend le	Le prix à payer	Prix (€)	
Beaufort à 8€ le kg. Si x	s'exprime à partir de	10 -	
désigne la masse en kg	la masse achetée à	8	
de fromage, alors le	l'aide de la fonction	5-	
prix à payer p(x) est	linéaire p définie	Masse (kg)	
proportionnel à x.	par:		
On a:	p:x →8 x.	La droite	
P(x) = 8x.		représentative a pour	
8 est le coefficient de	p est une fonction	équation $y = 8x$. Son	
proportionnalité.	linéaire de	coefficient directeur	
	coefficient 8.	vaut 8.	

II) Fonctions affines:

a) <u>Définition</u>:

Soit a et b deux nombres fixés.

On appelle fonction affine f, la fonction qui a tout nombre x associe le nombre ax + b : f(x) = ax + b.

Le nombre a est appelé le coefficient de la fonction affine.

Exemples:

La fonction f définie par f(x) = 3x + 6 est une fonction affine (a = 3, b = 6).

<u>Cas particuliers:</u>

- 1) b = 0: la fonction affine est alors la fonction linéaire définie par f(x) = ax.
- 2) a = 0 : la fonction affine est alors la fonction constante définie par f(x) = b.

b) Détermination des coefficients d'une fonction affine :

Exemple: soit f une fonction affine telle que f(5) = 16 et f(3) = 10. Déterminer la fonction f.

Méthode:

On sait que f est une fonction affine, donc elle s'écrit sous la forme f(x) = ax + b.

<u>Première étape</u>: on écrit les équations définies par f(5) et f(3):

On écrit que :

- f(5) = 16 soit en remplaçant : f(5) = 5a + b = 16 (E1)
- f(3) = 10 soit en remplaçant : f(3) = 3a + b = 10 (E2)

Deuxième étape : on calcule la valeur de a :

On soustrait membre à membre les équations (E1) et (E2) :

$$(E1) - (E2) = 5a + b - (3a + b) = 16 - 10$$

 $5a + b - 3a - b = 6$
 $2a = 6$
 $a = 3$

Troisième étape : on calcule la valeur de b :

On sait à présent que a = 3 c'est-à-dire on sait que f(x) = 3x + b.

On choisit l'une ou l'autre des images données, par exemple f(5) = 16.

$$=> f(5) = 3 \times 5 + b = 16$$
 (E3)

On résout l'équation (E3) :

$$3 \times 5 + b = 16 = > 15 + b = 16$$

 $b = 16 - 15$
 $b = 1$

Quatrième étape : on conclut :

La fonction affine f cherchée est f(x) = 3x + 1.

c) Représentation graphique d'une fonction affine :

Propriété:

La représentation graphique d'une fonction affine dans un repère est une droite.

Exemple:

Représenter graphiquement la fonction affine définie par f(x) = 2x + 1.

Méthode:

<u>Première étape</u>: on détermine les images de trois nombres par la fonction f, par exemple -1, 0 et 1.

$$f(-1) = 2 \times (-1) + 1$$

$$f(0) = 2 \times 0 + 1$$

$$f(1) = 2 \times 1 + 1$$

$$f(-1) = -2 + 1$$

$$f(0) = 0 + 1$$

$$f(1) = 2 + 1$$

$$f(-1) = -1$$

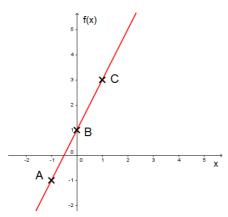
$$f(0) = 1$$

$$f(1) = 3$$

Deuxième étape : on construit un tableau de points à l'aide de ces valeurs.

Points	Α	В	С
x (abscisse)	-1	0	1
f(x) (ordonnée)	-1	1	3

<u>Troisième étape</u>: on place ces points dans un repère et on trace la droite.



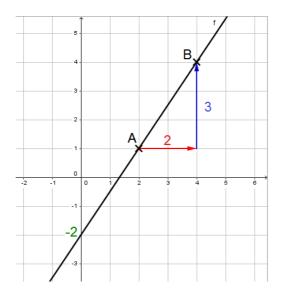
Représentation graphique de la fonction affine f

Remarque: on dit que l'équation de la droite (AB) est y = 2x + 1 et que son coefficient directeur est 2.

d) Déterminer une fonction affine à l'aide de sa représentation graphique :

Exemple:

Déterminer la fonction affine f dont la représentation graphique est :



Méthode:

<u>Première étape</u>: repérer deux points sur la droite qui ont des coordonnées entières. Par exemple, les points A(2; 1) et B(4; 4) conviennent.

<u>Deuxième étape</u>: On se déplace horizontalement et verticalement pour aller <u>du point qui a la plus petite abscisse</u> (ici le point A) vers <u>le point qui a la plus grande abscisse</u> (ici le point B). Dans notre cas, on a un chemin horizontal de longueur 2 unités puis un chemin vertical de longueur 3 unités.

Le coefficient de la fonction affine est égale au quotient de la longueur du chemin vertical par la longueur du chemin horizontal, soit ici a $=\frac{3}{2}$. Dans le cas où la droite descend, on prend l'opposé de ce quotient.

<u>Troisième étape</u>: La droite coupe l'axe des ordonnées en un point d'ordonnée -2 : il s'agit de la valeur de b. Ainsi, b = -2.

Quatrième étape : On donne l'écriture algébrique de la fonction affine :

La fonction affine cherchée est $f(x) = \frac{3}{2}x - 2$.

e) Fonction affine et droite :

Propriété:

Dans un repère, (d) est la représentation graphique d'une fonction affine f définie par f(x) = ax + b et $M(x_M; y_M)$ est un point donné.

- Si $y_M = ax_M + b$, alors le point M appartient à la droite (d).
- Réciproquement, si le point M appartient à (d), alors $y_M = ax_M + b$.

Exemple n°1: montrer qu'un point appartient à une droite :

Soit (d) la représentation graphique d'une fonction affine f définie par f(x) = 2x + 5.

Montrons que:

- 1) le point M(4; 13) appartient à (d).
- 2) le point N(-6; -8) n'appartient pas à (d).

<u>Méthode</u>: pour chaque point, on calcule l'image de son abscisse que l'on compare ensuite avec son ordonnée.

Point M(4; 13):

```
f(4) = 2 \times 4 + 5 = 13: comme 13 = 13, M appartient à la droite (d).
```

Point N(-6; -8):

```
f(-6) = 2 \times (-6) + 5 = -7: comme -8 \neq -7, N n'appartient pas à la droite (d).
```

Exemple n°2 : Déterminer les coordonnées d'un point appartenant à (d) :

Soit (d) la représentation graphique d'une fonction affine f définie par f(x) = -3x + 7.

- 1) Calculer l'ordonnée du point M(-1;y) appartenant à (d).
- 2) Calculer l'abscisse du point N(x ;13) appartenant à (d).

Point M(-1; y):

Méthode : l'ordonnée du point M est égale à l'image de son abscisse.

$$y = f(-1) = -3 \times (-1) + 7 = 3 + 7 = 10.$$

Les coordonnées du point M sont M(-1; 10)

Point N(x; 13):

Méthode: l'abscisse du point N est égale à l'antécédent de son ordonnée.

On calcule l'antécédent de 13 :

$$f(x) = 13 = -3x + 7 = 13 = -3x = 13 - 7 = 6 = x = \frac{6}{-3} = -2$$

Les coordonnées du point N sont N(-2; 13)